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ABSTRACT

The purpose of the research carried out under this contract
has been the development of mathematical methods and computer
programs for the extraction of meaningful information from
biological, primarily neurophysiologlcal. measurements. Emphasis
has been placed on statistical methods suitable for separating two or
more random signals and which provide insight into the underlying
mechanism by which the signals &re generated. Loeve-Karhunen
expansion and Discriminant Analysis methods are applied to the
problem of time signal classification. Experiments are performed
both on computer generated time sianals and on electroencephalograms.
Methods of coping with the singularity problem arising from a
small sample size are invest*qated.
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SECTION I

INTRODUCTION

The purpose of the research reported in this and a previous
volume1 has been the development of new mathematical methods and
computer programs for the extraction of meaningful information from
biological, primarily neurophysiological, measurements. Emphasis
has bpen placed on statistical methods suitable for separating two or
more random signals ani which provide insight into the underlying
mechanism by which the signals are generated.

The previous efforts were largely concentrated on the Loeve-
Karhunen decomposition of continuous signals. The work covered by
this report is directed toward an evaluation, extension and modifi-
cation of this method.

In attempting to extract meaningful information from biological
measurements, several fundamental operations are often required.
They are

Compression: i.e., the reduction of the amount of information
which must be stored, consistent with the need for subsequent
processing or reconstitution

Clurtering, i.e., the separation of a set of measurements into
subsets, the number of which may or may not be predetermined,
on the basis of some measure of similarity

Classification: i.e., the operation of assigning a measurement
to one of a number of existing classes.

In this research, "biological measurements" are assumed to be
time signals, i.e., continuous scalar functions of time, having a
known bandwidth. The continuous signals can be replaced, without
lose of generality, by discrete time series producei by appropriate
sampling techniques.

To provide insight into the choices of methodology and under.
standing of assumptions that must be satisfied before significant
solutions can be expected, some of the differences between biological
signals and those classes of signals more frequently encountered in

classification problems should be considered.



Most classification problems which have been solved (e. g.,
communication problems, optical character recognition problems)
deal with a finite number of deterministic signals which are con-
taminated primarily by additive noise. In contrast, many biological
sigr.als (e.g., the spontaneous electroencephalogram) have no
deterministic component and, therefore, can only be described in
statistical terms. If an attempt is made to define the statistical
parameters by averaging a number of signals and those signals have
been significantly contaminated by nonadditive noise (such as multi-
plicative noise, random time base compression or random phase shift),
the averaging may eliminate the signal. If systematic distortions have
been introduced in the measurement process, the signal-to-noise ratio
may actually be worsened by averaging.

Another problem arisirT in processing biological signals is
whether the desired information is at all present in the signal being
processed. Often it will be necessary to assume the information re-
sides therein. A negative result can therefore mean either that the
information is not present or that the retrieval technique is deficient.

The sample size may be relatively small in biological processing
problems, because of the difficulty in making measurements or finding
sufficient numbers of specimens of a certain class. This limitation
may affect the choice of decision procedures.

Most of the methods described in this report are based on linear
operations, which are based on the minimization of some mean-square
error criterion. These limitations have been imposed for the sake of
mathematical and computational simplicity. Any explicit or implicit
claim of optimality should be interpreted in the context of these limi-
tations.

The potential advantages of using computers to compress, cluster,
or classify biological data may seem too obvious to warrant discussion.
However, for completeness the following points are made:

1. Compression

It appears entirely feasible to replace simple or multiple time
signals, or pictures, by sets of numbers such that a) any proctr sing
can be based on these numbers in lieu of the original signals, or b)
the original signals can be reconstituted at will to any predetermined
degree of accuracy. The primary advantages are the convenience and
economy of transmitting and storing a few numbers instead of time
signals or pictures.
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2. Clustering

Clustering routir.es are useful for locating and defining subsets
within a measurement set on the basis of commonly held attributes
which may not be apparent from visual inspection. The information
derived about the nature, location, and quantity of these "clusters"
r,,ay provide a basis for the formulation of hypotheses regarding the
underlying mechanism by which the signals have been generated. In
some cases it will be possible to test these hypotheses by carry:..g
out classification experiments on additional data.

3. Classification

The automatic classification of biological data can be considered
at several levels of difficulty. At the simpler level are applications
in which discrimination is required only between good records and

those containing gross errors or artifacts, or between records with
or without some large, well-defined occurrence. Sone of these
rudimentary but important applications are well within the capabilities
of the methods described herein. The classifying performance on the

basis of progressively more subtle attributes will have to be evaluated
on the particular data classes of interest. In the more complex
problems, the methods presented here may be useful components of
a more comprehensive, as yet undeveloped, methodology.

3
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SECTION 1I

EVALUATION OF LOEVE-KARHUNEN METHODS AS APPLIED
TO THE ANALYTICAL CLASSIFICATION OF BIOLOGICAL DATA

1. Integral Equation Formulation

Loeve-Karhunen methods are based on certain desirable proper-
ties, (i.e., orthogonality, completeness, efficiency) of the eigen-
functions of linear integral equations having symmetric kernels. 2
Karhunen 3 and Loeve 4 applied this theory to the decomporition and
discrete representation of random time functions, in which case the
kernel is the autocovariance function of the random process. The
methods have found practical application in the design of communi-
cation and radar detection systems. 5, 6

These methods completely specify the design of a set of linear
filters that are "optimal" (in a sense that will be described below)
for analyzing the random process in question. These filters have
weighting functions matched to the eigenfunctions corresponding to
the largest eigenvalues. The number of filters required in any appli-
cation can be readily determined as a simple function of the magni-
tudes of the eigenvalues. If it is necessary to analyze a random
process, the statistics of which are stationary but unknown the
following procedure is indicated:

1. Record a statistically representative sample of the process
2. Compute the eignevalues and eignefunctions of a sample

covariance matrix of the process
3. Adjust the filter bank,* in accordance with the above.

The filter bank, then will more efficiently analyze that random
process than any band-pass filter bank, or any other linear filter
having the same rcmber of paths.

If the statistics of the process change slowly and smoothly with
time, periodic recomputation and adjustment provide the basis for
an efficient time varying analyzer.

*The term "filter bank" is used for simplicity, although it is antici-
rated that the filter will usually be simulated.
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The efficiency of the L-K method with respect to the analysis or
compression problem can be illustrated as follows: Consider a sero-
mean random process x (t) )i0St - T.

Any sample function, x (t), can be described without loss of
information by k numbers, according to Shannon's Sampling Theorem,
where k a 2 wT, w z bandwidth of fx (t)), and where the k numbers
are the sampled values of the signal at time intervals 1/(Zw).

Alternatively, any such signal can be described to any desired
degree of accuracy by n numbers, (n to be determined as described
below) according to Loeve-Karhunen theory.* where the numbers are
given by

a3  u 5 x t) (t) dt, j I, Z,...,n. (1)

0

* 1 (t) is the eigenfunction corresponding to the j'th largest
elgenvalue, X J, of the integral equation

T

SK (t, T) p (7 dT - ) % (t), 0 St S T (2)

0
where

K(t, E) Ex(t) x(r)] (3)

This neglects, for the time being, the storage required for the
eigenfunctions.
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Then, x(t) is said to "optimally approximated" in the sense that

the error of approximation,

Tn

bh oi o Xat aj j t] dt }4)
0 Jul I- I

is minimized for any value of n by ch' sing the* (t)'s and a to to

be the solutions of equations (2) and (i)a res4.ctively.

The value of n can be readily determined as a function of the

tolerable approximation error in terms of the eigenvalues since

T n G

n E E[ (t] dt- )IX = I ()
0 1=1 n+ I

Therefore, for a given random process, x(t, and a tolerable
error of approximation, a readily determined number of eigenfunttions
must be computed and stored. Using these elgenfunctions as a basis
for analyzing I signals subsequently received from the random process.
the following comparison can be made:

"Shannon" representation I x k numbers (6)

L-K representation I x n

n numbe r s

I n x k

where the I x n numbers are the coefficients determined by (1) and
the n x k numbers are the sampled representation of the elgenfunctions.

6



2. Geometrical Interpretation

The approximation problem has the following geometrical
interpretation. Considering the random process x(t) to be a random
vector j in an -n-dimensional vector space r. the approximation
;(t) . a 01 (t) falls in a n-dimensional subspace of r, which
shall cedenoted by r . The approximation problem in then the
problem of finding the orientation of r which minimizes the approxi-

mation error 8 = E I2- x I 2

It is readily shown 6 that e is minimized by finding the orien-
'ation of r which on the average maximizes the squared length of
the proJecIon of x.

Although the Loeve-Karhunen theory has been developed in the
context of integral equations and continuous time signals, any digital
implementation of the method necessarily demands that the continuous
signal be replaced by a tine-sampled representation. As noted above,
this replacement can be accomplished with no loss of informatic-n if
an upper bound on the bandwidth of the signal is known, a condition
which certainly can be satisfied in any class of biological measure-
ments of interest. Therefore, for all practical purposes Loeve-
Karhunen Analysis can be considered equivalent to its discrete
analog, which is well known in miultivarlate statistical theory as
Principal Component Analysis.

3. Matrix Formulations

Principal Component Analysis is concerned with the properties
of the eigenvaluea and eigenvectors of a scatter matrix which can be
construed to be the autocovariance matrix of a time series. (In
Ref. 1 this matrix is also referred to as the "density matrix" of the
autocorrelation function. ) This analogous representation can be
stated as follows: Given a zero mean random process (x (t) ),
0 < t < T, sampled at M equal intervals so that xk = xk (iT/M).
An autocovarlance matrix can be computed withe ements

7



n

A13  Ml Xk X (7)

k=

Then the matrix equation

A± (8)

is analogous to (2) and the eigenvectors ± and eigenvalues X, enjoy
properties analogous to those described above.

Principal Components Analysis is more widely known than L-K 8-11,15
Analysis and has been applied to the processing of biological signals.
A semantic difficulty exists in that a variety of names are used by
various researchers in referring to identical 3r similar techniques.
In addition to Loeve-Karhunen and Principal Components, Principal
Factors, Disc riminant Analysis and others are mentioned in the
literature. In Section VIII an attempt will be made to clarify the
relationiship between the various techniques.

4. Emperimental Results

A problem which continually arise, when evaluating various
techniques for analyzing and classifying signals of biological origin
is the followinir. Are the errors caused by the shortcomings of the
technique; or because the signals were incorrectly labeled, or be-
cause the effect of the attribute being studied is dominated by some
other variable attribute, or insufficient training set, etc.

As an effort to decouple these errors, the strategy followed has
been to generate random signals for preliminary checking of each
evaluation procedure. The ability of the procedure to correctly
classify these synthetic random signals gives no index of its effective-
ness or genuine biological signals, but clearly is a necessary con-
dition for the same.

The evaluation procedure followed is as shown schematically in
Fig. 1. The ensembles {x i Aft) ) and {x i B (t) ) are .ynthe sized in
the computer (IBM 7094). Each sample function of these ensembles
is measured in two ways: the measurements showvn here are 1) the
power content in various frequency bands Pi (N, and 2) the Loeve-
Karhunen coefficients, c(. We desire a figure of merit which

8



indicates the discriminating power of the alternate measurement
sets relative to the input ensemble (x i (t)). 0 This figure of merit
is defined as shown on Fig. 1. where p& and (Tare measured along the
Z axis. The Z axis has been located by a discriminant analysis
technique to provide the optimal separation of the projections of the
two sample clusters.

Such experiments were conducted on two groups of computer-
generated time series and on spontaneous EEG's of one subject
with eyes alternately open and closed. The results are shown in
Table I.

TABLE I

EXPE RIMENTAL RESULTS

Compute r-gene rated Spontaneous EE G
Figure of merit time series eyes open/eyes closed

Band-pass powers 8.7 3.4
(six measurements)

L-K analysis 11.3 4.7
(six measurements)

L-K analysis 9.2 2.8
(one measurement)

tThe power measurements were made with respect to the six
frequency bands: 1. 5- . 5. .5-7.5. 7.5-9.5, 9. 5-12. 5,
12. 5-17.5. and 17.5-25 cps; which is one of the many par-
titlonings of the frequency spectrum which have been employed
by EEG researchers.

*See Reference 25 for discussion of this figure of merit.

9



Filter(A)

Rand]> A
V 1,2[~m]

GAnalysis

Spectrumnf

112poopvp

01

.- (2)



5. Shape of the Eigenfunctions

The Loeve-Karhunen (or Principal Component) Analysis may
be thought of as a generalized spectral representation of a random
process. In this generalized representation the components are not
limited to the family of sinumoids as in Fourier analysis but instead
are, as has been described, chosen on the basis of economical
app roximati on.

In addition to the efficiency of the L-K representation, another
less well-known advantage may re sult from the unique prope rtie s of
the method. This advantage follows from the fact that the method
systematically finds the largest constituents of a random signal,
subject to the conetraint that their coefficients be uncorrelated. If
then, an assumption of gaussianness can be justified, the eigen-
functions can be conceived as outputs of (statistically) independent
mechanisms. "herefore, a research worker confronted with the
problem of analyzing a complex waveform comprised of the sum of
waveforms generated by a number of independent sources may be
able to associate physical meanings with the various eigenfunctions.

Figures 2 and 3 show the first ten eigenfunctions of the computer-
generated -Agnals and the EEG's, respectively. It is interesting to
note that the eigenfunctions of the EEG are not, in general, sinusoidal
but do exhibit periodicities closely related to the well-known alpha,
beta, and theta frequencies which have been postulated on the basis
of Fourier analyses. Figure 4 shows the autocorrelograms from
which the functions of Figure 3 were derived.

6. Inadequacy of L-K for Classification

Despite the advantage indicated previously relative to the con-
ventional methods, Loeve-Karhunen analysis is clearly suboptimal
with respect to the classification problem, since it does not make
use of available information concerning the correlations within the
several classes. In order to clarify this point, consider the hypo-
thetical set of data represented in Figure 5 in which each point
represents a sample time function c. the state indicated, and three
dimensions of an m-dimensional vector space are shown.

As described above, the effect of Loeve-Karhunen analysis is
to define a subspace of any dimension n < m such that the sample
points, when projected on this subspace, are dispersed maximally

11
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in the mean-square senme, without regard to any inherent grouping
of the points. It follows, therefore, that L-K treatment of the data
as shown in Figure 5 will be the same whether the purpose of the
processing is to infer the state of the eyes, or the level of alertness.
It in evident that an optimal method would necessarily be a function
of the use for which it is intended. Various means of accomplishing
this are discussed in the following section.

x 5

x

Eyes Open Eyes Closed

Ale rt X _

Drowsy J

Fig. 5 Geometrical Representati,3n of Data
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SECTION III

DISCRIMINANT ANALYSIS

1. Discussion

Discriminant Analysis differs from L-K physically, in that it
asawius the existence of a set of labeled data, i. e. . data whose correct
class mern6ership is known. This class information is exploited in
that the sample covariance of the subgroups are computed as well as
that of the aggregate. Then, formally, where L-K or Principal
Components is based on the solutions of the simple eigenvalue problem

[A- IJ= 0,

Discriminant Analysis is based on the solutions of a generalized
eigenvalue of the form

where B and C are functions of the aggregate and subgroup covariances
respectively, the precise definitions of which will be presented in
Section VIII.

The solution of the simple problem defines a subspace which
maximizes the scatter * of the sample points. Th- solution of the
generalized problem defines a subspace which maximizes the scatter
of the groups, keeping the within group scatter constant.

In contrast to the simple problem, the solution of the generalized
problem requires matrix inverbion. Therefore a singularity problem
arises when the sample size is less than the dimensionality of the
original space.

We have evaluated experimentally the following three different
means of circumventing the singularity problem. The use of the
Moore-Penrose Generalized Inverse for inverting the singular
within sample scatter matrix; the 'H' inverse, a method suggested

* See Section VIII I for the definition of "scatter."
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by T. J. Harley zr.-d described in Section VIII 3; and finally the method
suggested by us of using the L-K method to reduce dimensionality and
then applying D. A. The D. A. program has been provided with the
nption of taking the 'H' inverse and th5 program described as program
G accomplishes L-K followed by D. A.

On the basis of the experiments we have performed, L-K followed
by D. A. gave beat results. As explained in SectionVII 2,D. A. can
also be accomplished via prewhitening followed by K-L.

2. Experimental Results

The following experiment was conducted on a set of 60 visually evoked
EEGs recorded at the Mayo Clinic. Thirty samples were recorded
with subject's eyes open. 30 with eyes closed. Each set of 30 was
divided so that samples 1. 3. 5, . .. , 29 comprise an analysis set and
samples 2. 4. 6, ... , 30 comprise a test set, where the numbers
indicate the time sequence of occurrence. (This division of the
samples was chosen to minimize the effect of any nonstationarity of
the data. ) Using various methods, then. the analysis data were used
to define the directions of the corresponding lines on which sample
points could be projected from the original 95 point vector space. The
separation of the test data when projected on one or another of these
lines, provides a measure of the efficacy of the respective methods
by which the directions are defined.

Figure 6 shows the result of projecting the analysis and test data,
first on the line by L-K Analysis, and then on the line defined by
Discriminant Analysis. Because of the singularity problem, the
Discriminant Analysis is performed on the data after it has been
reduced from 95 to Z5 dimensional space L-K.

Figures 8 through 11 represent the data used in this experiment
and the marked signals. i. e., records 2. 10, 12, 15 for eyes open
test data and record 5 for the eyes closed test data, represent the
errors indicated on Figure 6.

*The computer programs are described and listed in reference 27.
Copies of the programs may also be obtained from Mathematics
and Analysis Branch, Aerospace Medical Research Laboratories,
Wright-Patterson Air Force Base, Ohio.
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The results demonstrate the characteristic tendency of the L-K
projection to be maximally dispersed without necessarily effectivrly
separating the classes of interest. The D.A., on the other hand,
demonstrates the tendency to separate the classes of Interest.

Figure 7 illustrates the case when L-K analysis would indicate
a line of projection which does not effectively separate the two classes
but D.A. does find the appropriate line of interest. UI the two cluster
centers, In this example, were far apart L-K woi-tld indicate an
appropriate line of projections.

A third experiment was conducted which verified the formal
equivalence between D. A., and prewhitening followed by L-K.

L-K

D. A.

Fig. 7 Example of L-K Inadequacy

19
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SECTION IV

EVALUATION OF DECISION PROCEDURES - BAYES VS

MINIMUM DISTANCE

The Bayes Decision Procedure has certain desirable properties,
such as the ability to nonlinearly partition the vector space and t '
provide minimum, expected loss decisions under certain conditions.
However, its implementation requires either the fitting of multi-
dimensional density function, or the discretisation of the measurement
space and the empirical determination of M (NK + 1) probabilities,
where M is the number of classes, N is the number of measurements,
and K is the number of quantization levels. It is difficult to predict
the variance of these tabulated probabilities, but it may be noted that
many huidreds of samples are usually used in making such a tabu-
lation in character recognition work.

Assuming that such sample sizes may often be prohibitive in
biological work, an attempt has been made to evaluate Bayes relative
to other decision methods for small samples, and to provide an
alternate decision program for such cases.

The Bayes decision program was tested on the six-dimensional
sample points produced by the power band and the L-K measurements
of the computer-generated time series. As a consequence of the
small number of samples available for training (five ior each class in
each case), only two of ten test samples could be classified correctly
in one case and none of ten in the other; i. e., no decision in 18 of
20 test samples. Although this sample size is extremely small, the
point is that simple decision procedures based on distance measures
can discriminate reliably under such conditions. For example, in
this case, the sign of the first L-K coefficient is a sufficient criterion,
with ample margin of safety, to classify all the test samples. The
results indicate that an alternative decision procedure is heeded for
problems involving small sample size. The discriminant analysis
procedure described in the previous section is one such approach.
This approach, when used in conjunction with some algorithm for
setting threshold and a means of circumventing the singularity problem,
is recommended for small sample decision problems.

24
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SECTION V

EVALUATION OF POWER SPECTRUM PROGRAM

In the program supplied with Reference 1, the power spectrum
is obtained by computing the sample autocorrelation function and then
taking its Fourier transform. This program was used many tiwnes
during this year's experimentation, both on synthetic time series and
on spontaneous EEGs. Investigation of certain spurious components
of the computed spectra indicated the advisability of making the
following restriction and revision:

I) The autocorrelation function p (y) should not be computed for
lags greater than 10% of the interval Y ;

2) A "gate function" g (y) , providing more smoothing than does
g (y) a 1, 0 < y < X , must be used. Good results have been obtained
with the "hamming" function1 2 .

With these changes, the program gave generally satisfactory
results except that the spectra thus derived are still extremely
sensitive to sampling error in the autocorreloaram. This sensitivity
has been commented on by other investigators~f ' 12. An alternative
method of power spectrum determination exists which doer not re-
quire the autocorrelation function, and which therefore may yield
more consistent results 13 . This "direct" method was used, successfully
to compute the spectra of some EEG data. However, it was decided
not to carry out any comparative evaluation of the two methods but.
rather, to attempt to develop a testing procedure which eliminates the
need for computing the power spectrum altogether. The results of
this effort are reported in the following section.

25



SECTION VI

TIME-DOMAIN PROCESSING OF STOCHASTIC SIGNALS

Certain classes of neurological signals are stochastic: i. e.,
unpredictable in detail, with only certain statistical properties of
the signal knowr Spontaneous EEGs exemplify such signals. The
methods of orthogonal analysis and classification developed under
this contract do not apply naturally to stochastic signals, since the
method of generating coefficient assumes the signal to have
deterministic content with respect to some point of time reference.
A standard procedure of transforming stochastic signals, if stationary,
into deterministic signals is to compute the power spectrum or auto-
correlation function, and then to us- that as the signal to be analyzed
rather than the original time function. (This was the procedure
suggested in Ref. 1.) This artifice has the disadvantages of consuming
computer time, introducing additional error, and producing eigen-
functions which are not interpretable in terms of the time functions.

A time-domain procedure which eliminates these shortcomings
has been derived and programmed (see Sections VIII 6). This
procedilre can be implemented in r~al time via a bank of filters
matched to the eigenfunctions used in conjunction with delay lines,
multipliers and integrators; or via a relatively simple digital program.
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SECTION VII

EXPERIMENTAL FACILITY FOR COLLECTING EEG DATA

In order to obtain empirical data upon which these analyses might
be tested, equipment was designed and built to elecit responses from
the human visual cortex by photic stimulation. By placing small, high
powered collimating and Mfaxwellian lenses close to a glow modulator
tube (Sylvania R 1166). it is possible to produce a uniform field of
72. 000 feet. Lamberts covering a 600 solid angle (Fig. 13). This is
sufficiently bright that a beam splitter reducing the brightness to
24, 000 feet. Lamberts might be used to provide the option of super-
imposing another, independent field on the first, and tu permit
monitoring of the two fields by photocell. The second field is at
present being used to supply a fixation point consisting of a 15-45
Pinlite (Kay Electric). reduced in intensity and reddened by a series.
variable zesistor.

The advantages of the Maxwellian view are threefold: (a) it
directs into the eye all of the light incident within its area instead of
scattering it as a reflecting surface or ground glass w'mld do; (b) by
concentrating most of the rays of light on the center of the pupil, it
increases their effectivenese by virtue of the Stiles-Crawford effect;
(c) but most important, it focuses an image of the source within the
2 millimeter area in the center of the pupil within which the pupil
cannot constrict; thereby eliminatiag variations of retinal illuminance
resulting from pupillary oscillations. It does present a problem in
measuring the equivalent luminance, however, especially in this case
where the lens is only about 7 millimeters from the cornea. The
solution adopted here was to occlude half of the colimating lens and
substitute in its place light incident through the second half of the
beam splitter. Once the two have been matched, the second field can
be measured by conventional means.

The luminous flux of a glow modulator is a nearly linear function
of its anode current, but along with this change in flux is a change in
hue. Consequently, for visual experiments it is best not to vary the
anode current for strictly comparable results. This problem was
circumvented in the present system by delivering the light in 90 micro-
second pulses of uniform shape and amplitude. By Bloch's law the
effect of a given amount of light energy is independent of its distribution
over time, up to a certain critical duration. Thus the apparent

27



Se #35OV

Fig. 12 Control Circuit for Glow Modulator.
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brightness can be varied' by varying the number of pulses delivered
within this critical duration, which varies from 10 to 100 milliseconds
depending upon conditions. Thus, the equivalent luminance can be
varied over a range of two to three log units by this means, and the
range can be shifted about by the variable resistor connected to the
cathode of the pentode in Fig. 12. The range can also be extended
downward another 0. 6 log units by delivering the pulses to the grids
of the pentode with a device having faster rise time than the Tektronix
161 pulse generator used here. The tise time of the light output of
the glow modulator itself is under 20 microseconds, and the time
constant of decay is less than 2 microseconds. (This is measured
with a IP42 photocell in series with a Tektronix 545 oscilloscope.
oscilloscope, shunted by a 10K resistor, a very fast system with
spectral response approximately that of the human eye. )

The glow modulator and accessory equipment are mounted on
a three-coordinate manipulator for easy positioning of the image
within the pupil. The subject is provided with adjustable bit-board
and two-point head rest.

The evoked response is recorded from the scalp one inch above
and one inch to the right of the occipital protuberance, with the left
ear lobe as reference. The data logging system has been described
in the draft report submitted to the contracting agency at the
termination of the previous contract year.
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SECTION VIII

MATHEMATICAL- REPORT

1. Discriminant Analysis: Its Theoretical Justification and Relation
to Loeve-Karhunen Analysis

The basic assumption underlying probabilistic classification
into classes is that there exists for each class a multivariate proba-
bility distribution, the member (xl, ... , 4) of class i being con-i
sidered a sample from a population which is distributed in a k-
dimensir .ial space according to a certain probability distributions.
Our approach to the problem is that the only knowledge we have
about the distributions is that which can be inferred from training
samples and no assumptions are made about the functional forms of
the distributions. Let us consider linear classification procedures
first, and limiting the discussion to two classes, define linear
procedures formally (the classification to a finite number of classes
will be accomplished by a repetition of the pairwise procedure an
appropriate number of times). Let b (0i 0) be a column vector (of
k components) and c a scalar. An observation (signal) x is classi-
fied as coming from the first population if b" - x < c and'as from the
second if b' • x > c (the symbol ' stands for transpose). The vector
b and the constant c are to be chosen to provide maximum discrimi-
nation, in some specified sense, between the two cLasses. An ex-
ample of such a procedure which was originally consaide red by
Fisher 2 1 and the method of statistical analysis which was developed
from the solution of the problem is called discriminant analysis. A
good exposition of this solution is given by Wilks. 7 Disc riminant
analysis solve a the following problems: Suppose we have two
samples from k-dimensional distributions, these can be represented
geometrically as two sample clusters in Euclidean k-space.
(Sample I contains n, points and sample 2 contains n2 points.) We
want to project these two sample clusters orthogonally onto a line
so that the variation between the two projected samples is as large
as possible, relative to the variation within the two projected
samples. The terms "variation between" and "variation within" as
they are defined in the solution are presented below. Using the
notation in Wilks, 7 suppose we are given a sample of size n from a

n

k-dimensional space (xli, ... , X 4) C1, ... , n andlet = Xi
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n

(i- I ,... k)then the matrix U with elements uij = (xit-xi) (xjC ij)

eu l

will be called the internal scatter matrix and its determinant.

j Ul the internal scatter of the sample. It will be noted that U is non-
singular If and only if the n point in the sample does not lie on a hyper-
plane of less than k-dimensions. Now suppose

(x I )  x El = I. . n I and(x( ( ).) 4
0( )  N) (Y)),,=lZ h

n2 are two samples. Let xU (x . xk ))ova be the

vectors of means and UM, U the internal scatter matrices of the
two samples respectively. Letx= ( 1 """' 3k) be the vector of
sample composed of the two samples pooled together. And let Uw
UM ) + U( 2), the within-samples scatter matrix for the two samples.
tiote that geometrically U* is the scatter matrix for the k-dimensional
cluster one obtains by rigidly translating one sample cluster with
respect to the other (without rotation) until the means of both samples
coincide, and then pooling the two sample clusters together as a
single clHster. Finally let U Ba U-Uw. For an arbitrary vector (b , ... bk)
let

k

1y), , n Y - Z (9)

or using vector notations z = b X

Thus, z ... , 2 and z(  ... , zM. exceptfor scaling, are

one dimensional samples obtained respectively by projecting the
original k-dimensional samples onto a line whose direction cosines
in the original k-dimensional space are proportional to (b,, ... , bk).
See Figure 14 for k = 2.

Let (1 and z(2) be means of the two samples of z's and ithe
mean of the pooled samples.

ets =j (z -LetS )= - lO)

Y=l g =I
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S (Y) 0) (1)

N- 1

Note that if S is the scatter of the grand sample obtained by
pooling the two samples of z's then S a Sw + $B " Sw is the within
sample com onent i.e., the sum of the squares of the n, rossible
segments (zz1) 1)) generated by takingl () and each a ) in one

sample summed with the sum of the square s of the n2 possible

segments (z - (2)) generated by taking (2) and each z(2) in thetZt2

other sample, and SB is the between-sample component of S. It is
also clear that

S b_ Uwb. SB =b'U B b andS =b'Ub. (12)

The problcm is to determine b' = (b ... , b ) so as to maximize
SB (or equivalently to minimize S /(S W + SB) %;r a fixed value of

S W).

The basic results concerning the solution of this problem may be
stated as follows: The value of (b 1 , ... ,bk) say (br, ... ,b ) which
minimize the ratio

S
Q -w+ (13)

Sw +SB

so that S has a fixed value D i 0, is the solution of the equationW

(U B _ X1 uw)b = 0 (14)

where )1 is the nonzero root of the characteristic equation

UB - kuW 0, thusb*= (UW)" 1 . (1) - ;() (15)

Let us note that if U w = I (I is the identity matrix) Q takes the
following form
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S WuWb b'Ib

Q w = _ = _ __ (16)

minimizing 0 while keeping Sw = D g/0 in equivalent to maximizing

S keeping b 2 a D f 0 and we canset D = 1.
ki

bl

i= 1

We see that when Uw = I the problem reduces to finding a line
direction b' = (bI, . .. bk) which will maximize the scatter of the
projected points of the two samples pooled together. The solltion
to this problem is Principal Component Analysis and b'* = (b * . . b
is the eigenvector corresponding to the largest eigenvalue in the
solution of the equation (U - )I)b = 0. We notice, as mentioned before,
that this last equation is identical to the equation which is solved to
get the eigenvectors of the Loeve-Karhunen expansion. If the Loeve-

Karhunen method would have been used to obtain the ootimal line to
project our samples on, for the purpose of discrimination, this line
would coincide with the one obtained by the method of discriminant
analysis when the within.-sample scatter matrix Uw is the identity
matrix. Looking at it geometrically, what discriminant analysis tries

to do is to project the two samples onto a line so that the means of the
two one-dimensional samples of points are as far as possible relative
to the within sample scatter of these two one-dimensional samples.
The Loeve-Karhunen method tries to project the pooled two samples
on a line so as to maximize the distance among all the projected
points. Since Uw = I corresponds geometrically to a spherical within-
group scatter, it is clear that in this case making all the projected
points in the pooled sample as far as possible from each other is
equivalent to maximizing the distance among the means of the two
projected samples. See Figure 15.

,•,,• • • i,i,,•i

its,

Figure 15 - A Projection of Spherical Clusters
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2. The Use of Prewhitening Filters

The arguments presented in Section VIII- I suggest that solving
the discriminant analysis problem is equiv-lent to first making a
change of coordinates, such that in the new set of coordinates the within
sample scatter matrix is spherical, and then solving the Loeve-Karhunen
problem i. e., finding the eigenvector corresponding to the largest
eigenvalue. We shall derive the appropriate change of coordinates to
accomplish this.

If we consider each sample vector as (x " I X - 2

kg X y= Is ,C 1,.,.n i.e., subtract

from each sample vector the sample mean, and denote the (n1 +n x
k matrix

1 1 1
x It s.. , x 21,... P k I

2 "2= Ilni+ i  X2 +1 (17)

'2 
2

Lx I nI +n knlI+n 2

then Uw = XtX.

If we make a change of coordinates such that the vector x (Y) is

transformed to the vector ( Y) by the transformation y (Y 1 -= v

(Uw ) _() then Y = X [(Uw) ' J and if we denote the within
Vw

scatter matrix in the new coordinate system as V we have

v YY = (U ")4 xt "(uw) 2]i W)(IF) i(uf) kJu) 4 1,= I (1S)
We conclude that the appropriate change of coordinates f 9 r makingt

the within-group scatter spherical is the transformation y -y)u= (Uw) .
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In the lan.ua r of communication engineers, the linear trans-

formation I Uw] "" is called a prewhitening filter because of the

terminology of white noise used to denote noise which has a covariance
matrix I.

The fact that D. A. can be accomplished by prewhitening followed
by L-K can also be demonstrated as follows:

The optimal line of projection b is found by the method of D. A.
as the eigenvector corresponding to the largest (for two groups the
non-zero) eigenvalue of the characteristic equation

IuB - X Uw)I 0 (19)

or the solution of

u U )b 0 (20)

and then we obtain

W(() = b x (21)

B w
where both x and b are column vectors. Since U = U - U w ,

Eq. 20 can be rewritten as (U - (I + ) 1 )U )b = 0.

or

(I + X1] (UW) - (22)

setting (I + ) = X' and (Uw)b = c, we obtain

u u(uw )  I c = 0 (23)

w
Since by prewhitening we multiply each incoming signal by (U) 

I w-
the internal scatter matrix of the grand sample becomes (Uw) S. U(U ) 2
if we now apply L-K (or equivalently principle components) analysis
and pick the eigenvector corresponding to the largest eigenvalue of the
characteristic equation

I(Uw) U(UW) -)>'Ifl = 0 (24)

we obtain the optimal line to project on, c , as the solution of the
equation

UW) U(Uw)~ XI 0 (25)
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and we see that except for (possibly) a scale factor we have

C ( w) b (26)

We note that since each of the incoming vectors was multiplied by

(UW " the sla (except, possibly, for a scale factor) will become

(Y) (' uwi4(y) (Uwk. (Uw).-il) _b'. : (2')
ty(T) xe-)sb (U -ty I (7

i.e., the same as Eq. 21.

It is appropriate to point out that if we think of one of the classes
as being "noise" and the other as being "signal plus noise" (again using

k

communication engineering terminology) and identify bi x i as the
i=!1

output of a discrete filter, then the ratio Q maximized in the discriminant
analysis problem is seen to be "signal-to-noise ratio". Thus, coefficients
b define the filter which maximizes the signal-to-noise ratio.

3. The Singularity Problem

For linear classification, discriminant analysis is used to reduce
the dimensionability of the sample space to one dimension and a threshold
is used to classify he sample points. The optimal direction to project
the sample points b is given in terms of the inverse of the within samples
scatter matrix. The problem of singularity of this matrix arises when
discriminant analysis is applied to a problem with a high dimensional
sample space and a small sample size. The internal scatter matrix is
nonsingular if and only if the n points in the sample do not lie on a hyper-
plane of less than k-dimensions, k being the dimensionability of the
sample space. If nI + n 2 < k + 2, n, and n 2 being the number of samples
for group one and group two respectively, the matrix Uw is singular,
i. e., its inverse does not exist.

In biological classification problems the sample size may be small
relative to the dimensionality of the sample space. Since the Loeve-
Karhunen method is optimal, in the mean square sense: for reduction
of dimensionality, it can be used for tackling small sample problems
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in a high dimensional space. The approach would be to reduce the
dimensionality of the sample space using the Loeve-Karhunen method
to a point where n, + n 2 - 2 is larger than the dimensionality of the
sample space and then apply discriminant analysis.

There are a few other methods which have been suggested for
the solution of the small sample problem which results in singularity.
One such method is to use the Moore-Penrose Generalized Inverse 24

for inverting the singular within-sample scatter matrix. This method
effectively restricts our search for best projection line to a subspace
of the sample space, which is orthogonal to the subspace in which
there is no scatter. Thus, one can eliminate "good" directions this
way and examples can be constructed in which this is just the wrong
thing to do. Another suggestion is to replace the zero eigenvalues of
Uw by the average eigenvalue thus making the matrix nonsingular 2 Z.

Or more precisely, if Q is the matrix whose columns are the eigen-
vectors S.

-2.2;
0 9 :0|

then ,

A = QD -1 Q,
m

where

m n - 2 n~- n

D = DIAG {.4)

trace D = sum of the elements on the main diagonal of the rmnatrix D

m = total number -f samples

n dimension of space

I identity matrix

AH will be referred to as 'H' inverse ('H' standing for
T. J. Harley who suggested it).

4. Principal Component Analysis 7

The Loeve-Karhunen expansion theorem states that a random
process in an interval of time 0 may be written as an orthonormal
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series with uncorrelated coefficients. The expansion is in terms of
the eigenfunctions of the autocovariance function of the process.
When the statistics of the process are unknown and a sample auto-
covariance is taken as an estimate of the autocovariance function of
the process, an expansion in terms of the eigenvectors of the sample
autocovariance matrix is identical to Principal Component Analysis
in multivariate statistics.

Consider a sample of size n from a k-dimensional distribution,
k < n. This sample may be represented geometrically as a sample
cluster of n points in k-dimensional Euclidean space R . Suppose
we wish to project this cluster orthogonally onto an s-dimensional
Euclidean space R., s < k, so as to obtain the greatest possible
s-dimensional scatter f the projected points (the term scatter will
become clear in the solution below). The problem is to determine
the direction of projection with respect to the coordinate system of Rk.

The solution of this statistical problem can be stated in the
following result due to -otelling (1933):

Suppose (x E,...,xkf, 9 = l,...,n) is asample of size n>k
from a k-dimensional dis ribution whose covariance matrix is positive
definite. Let IluijI be the internal scatter matrix of this sample, i. e.,

n n
U.. w = - - xi, i 1,2,. k

uJ =1

and let it be positive definite with probability 1. Let

(c I  ,...Ick ), p = l,.., k (28)

be s k-dimensional unit vectors, that is, such that C. - 1,

p= l,...,s, and set i=l P

k

zip i p .... s (29)
i=l

Let J pqI be the internal scatter matrix of the sarnple s ag*
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The values of the vectors which maximize the scatter RZpq are
the solutions of the a sets of equationsk

I (u i Xp 6 j) ; 0 = ,..., k (30)
J=l

p- 1..., where X '.,, are the s largest roots of the char-
acte ristic equation

ju - ki 0. (31)

6ij being the Kronecker 6, and where )l> ... > X. with probability 1.
Furthermore, these vectors are orthogonal, and the maximum value
of ji I is the product ) I .... s . The proof of the above statement
can Mfound in Ref. 7.

Both the above analyses are essentially a least mean squares
linear fit of a set of S orthonormal waveforms to a set of n observed
waveforms. We also note that Principal Component Analysis is some-
times referred to as Principal Factor Analysis. 23

5. The Choice of Threshold in Linear Classification Problems

In linear classification procedures an observation (signal) x is
classified as coming from the first population if b' - x < c and as from
the second if b' • x > c. The vector b and the constant c are chosen to
provide maximum-discrimination, in some specified sense, between the
two classes. In this section the choice of c will be discussed.

Let us first assume that b' • x has one of two possible distributions

N( pL 1, ( T ) or N ( 2. 0.2T i.e. , normal with mean VL I and variance

0.2 or normal with mean V2 and variance a2. We lose no generality

if we let j 2 > I and designate the population 1. Let us denote by L1
the loss associated with the misclassification of an individual from
population I and by L2 the loss assc-iated with misclassification of an
individual from population 11, Ll, L 2 > 0. Let us further denote the
a priori probability of population I by p and of population II by q = I-p.
Let P, be the probability that a random observation (signal) from
population I is classified as having arisen from II, and P11 the probability
that a random individual of II is classified as having arisen from I. We
wish to obtain the constant c which minimizes the expected loss, i. e.,
min ['i.pPl + L 2 qPl.
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P, dx (32)
€ 4 - 2 . Z / Z1

o2 a dx (33)

Taking the partial derivative with respect to c we obtain

&(LIPPI +L 2 qP1 1 ) Lip L 1

bc S - ep

22

+ Liq exp P( Z ) (34)

Equating the derivative to zero and rearranging, we obtain

L2 q 1  - c Z C-P,2 Z
2In L p + ( ) - (- ) = 0 (35)

1"-2

which is a quadratic in c with the following roots

C = 02 1- 2 { 02Zt I - ('2P Z:t"I Z 4 2 .1)2

"7 -0a

- Z 0 2 a) In L (36)
2 1 L q UZ

There are three possibilities for the roots of equation 35. There
are no real roots (Fig. 16) no ronts fall in (uap.Iaj interval (Fig. 17)
one and only one root falls in ( . .1 )( Fig. 18). Ira root should fall
at one of P I - 2, this may be c-.isi~ered as a limiting case of the
situation when no roots fall in (Llp2). When there are no real roots
the situation is tri-vial, and all individuals are classified into one
population. When no roots fall in (ptl,.I2 linear discrimination is not
very helpful, and quadratic discrimination is indicated. Let us con-
sider the situation when one and only one root falls in (,. When
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Fig. 16 Ngo Real Roots
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Fig. 16 No Rots in(iioot)s era
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I I

Fig. 18 One Root in (#I, IL) Interval
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a root falls in (p 1.L2). this is the root which minimizes (LIpP1 + L 2 q P. )
and is therefore the root desired. The other root maximizes
(LIpPI + L qP 1 ) and therefore will not be used. We also notice that
when "1 < te root which falls In (p 1. p 2) is the larger of the two
and when 02< O"1 it is the smaller, thus in both cases the positive
square root is required.

Let us now consider the case when neither a priori probabilities
nor loss functions are known. There can be two ciriteria for choosing
c. One would be the c which minimizes the sum of the two types of
errors, and the other which minimize the larger of the error quantities.

Consider now the minimizing of max (P, PI). Since PI and PSI
are monotonic, decreasing and increasing respectively, in c, the
desired c is located such that PI = PII. From Eq. 32 and Eq. 33 we
obtain

c -I&1*",
1 , 0z (--'Z ( 37)

thus,
SI 

(38)cI  (T 2

Solving, we obtain

U 1 4+T120 10I Oz+0e (39)
(2 1

Setting L I = L 2 = p q = I in Eq. 36 we obtain (taking the
positive square root) the c which minimizes [P + p i ll

cZ 1 2 rV+a 2-(r,5 lZ nl (40)c2 (Y2_ C12 121LI  2

It should be noted that if 01 = 2. the cts under both criteria
reduce to a c dependent upon only the centroids

= 2 
(41)

3 2
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Under some conditions tI + pI2 is a good compromise between
c 1 and c 3 . In Ref (21) Riffenburgh and Clunles-Ross find the conditions
under which c I is better than c 3 and conditions under which c 2 is
better than c 3 . In the B, A plane where B = r2/0(I and A= P 2-1 i/02+0"I
they find four regions, in region (I) ro linear discriminator is
reasonable, in region (2) c 3 is a compromise between c1 and c 2 , in
region (3) c 2 is better than c I , and in region (4) both c 2 and cl are
better than c 3 .

The appropriate threshold c is chosen according to the above
considerations.

6. Processing of Stochastic Signals

As described in Section VI, a commonly used procedure for
analyzing stationary stochastic processes is to first compute the
power spectrum or autocorrelation function of each signal in question,
and then to use either of these functions as the 'signal to be analyzed,
rather than the original time signal.

A method will not be presented which yields the same results as the
above mentioned standard procedure, but which eliminates the need
for computing the power spectrum or autocorrelation function of
each signal.

Consider the standard procedure, given a stochastic process
x(t). First the autocorrelation function +xx (T) is computed. Assume
the maximum correlation span of the process to be T/2. Then an
auxiliary function f(t), 0 < t < T, can be defined such that f(t) = Xx (t-T/2).
These auxiliary functions f(t) then are used to define a basis of elgen-
functions which are solutions of the equation

T,

S *ff(t- T) i,(T)dT ( i~i(t) (42)

0

The coordinates of any sample in the subspace thus defined are. given
by

c. =\f (t) i(t) dt. (43)

0
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The following procedure ham been developed so that the
coefficients can be determined without computing the autocorrelation
f(t) = #xx(t-T/2) for each sample function.

First consider that the cross-correlation between input, x(t),
and output, y(t), of any linear time invariant system with weighting
function h(t) is given by 19

OD*xy(T) (T -u) h(u) du

T
#S *xx(u - T) h(u) du. (44)

since 4xx is an even function, and it is assumed that

h(u) =0 0
{u>T

But, from above, #x(u - T) = fu-T+T/2)
so thit

T
ICY(T) = f(u-T+T/Z)h(u)du,

and therefore

T

4xy(T/2) = f(u) h(u) du. (45)
0

Then, if the weighting function h(u) is taken to be the ith eigenfunction
%Pi(u), the right-hand side of 45 becomes, by 43

T

Cl =so flu) (lu) du

The left-hand side of 45 by the definition of the cross-correlation
between stationary random functions is

J

* y(T/Z) = li"n I x(t-T/2)yi(t)dt = x(t-T/Z)Y(t (46)
xy OD .
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Finally, therefore, because of the quality between 43, 45, and
46, the coefficient c i can be evaluated as shown in Fig. 19 by averaging
(for a "suitable length" of time, 7) the product of the output and delayed
input of a filter whose weighting function is the ith eigenfunction.

rIDELY T/2

x It) yiM ci

Figure 19 - Time Domain Processing

An experiment was conducted to provide a direct comparison of
the standard procedure and the proposed time domain method.
Computer-generated random signals were used as the data set, with
20 samples of each class used for training and 20 for test. The results
on test data are shown in Fig. 20. The results show the time domain
method to be significantly more effective in separating the test samples
(figures of merit = 6. 25 vs. 4.5 for the standard procedure.)

7. Another Proof for Theorem 4. 1, Ref. I

Theorem 4. 1

Two probability distributions [Pi 1 and I ) l satisfying, Pi , 0,

X >0, 1=Pi = 1, YI k= I are connected by a double stochastic matrix
1~ ji

Aij such that p. 2. A.. .. If the labeling of the X is done in a
iJ1j=l j

descending order X> I) > ... then, for an arbitrary n, the sum of the
first n elements of jf7is not less than the sum of the first n
elements of f Pjl

Proof: 
*

n n n n g
2. Pi. A i Aij )kJ L 2. Ak (47)
i=l I i=l j i i i=l J=n+l ij j

* This proof was suggested by S. Winograd.
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Since X 1> >...>_ 'n>X >n+l' '

L. ap > x for anyi>0and & > 0 ()
p P n+ ppan P48)

Let a i- n+l (ip
11 n c ( 49)
2: 2. A.p l i-n+l p

note that since A is doubly stochastic

W n a2, 2, A. -- 2. A. (50)
p ,- i n+l .p l i=n+l P

2. Ai = n +l ip

p (51)
X I A.

p=lI i-n+l pI

by (47) and (48),

n n n
J -1  A X I Aj i 1=1 J=+l ij p= p p (S2)

Substituting (51) we get

n n +n c
k.I .,I . ;~ w+l A ]

-2.).2 A +2 2.. A. p p[ p.
J= J i=l AJ p=l i=n+l AP P p= =n

n

p=l P

n n2. : , p2 X Q.E.D.
=l p=l PQ.E.D
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'SECTION DC

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The L-K and Discriminant Analysis methods studied provide a
promising basic methodology for computer -assisted analysis and
classification of biological data. When properly used, the computer
programs which have been developed should become useful tools in
the hands of research workers in the biological sciences. It would.
however, be prudent to consider them still as experimental tools
until they have been exercised and ey~luated on much more data.

It is suggesbed that future research be devoted to the consider-
ations of methods of analysis based on other than the mean-square
criterion 16,17 and on extensions to multiple time signals 1 8 .
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